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ABSTRACT
Coevolution can be used to adaptively choose the tests used
for evaluating candidate solutions. A long-standing ques-
tion is how this dynamic setup may be organized to yield
reliable search methods. Reliability can only be considered
in connection with a particular solution concept specifying
what constitutes a solution. Recently, monotonic coevolu-
tion algorithms have been proposed for several solution con-
cepts. Here, we introduce a new algorithm that guarantees
monotonicity for the solution concept of maximizing the ex-
pected utility of a candidate solution. The method, called
MaxSolve, is compared to the IPCA algorithm and found to
perform more efficiently for a range of parameter values on
an abstract test problem.

Categories and Subject Descriptors
F.0 [General]

General Terms
Algorithms, Reliability, Experimentation, Performance

Keywords
Coevolution, archive, reliability, reliable coevolution

Introduction
Coevolution (Barricelli, 1962, 1963; Axelrod, 1987; Miller,
1989, 1996; Hillis, 1990; Koza, 1992; Lindgren, 1992; Kauff-
man & Johnsen, 1992) offers methods for problems where
the quality of individuals is determined by tests. For exam-
ple, in two-player games, the quality of a first-player strategy
is somehow determined by its outcome against all possible
opponents. Other test-based problem domains include con-
cept learning and function approximation.

Since the number of tests in a test-based problem can
be very large, evaluating individuals on all possible tests is
typically infeasible. Another option is to define a heuristic
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evaluation function, or to select a fixed set of tests for evalu-
ation purposes, but in both of these approaches it is unclear
to what extent the resulting biased evaluation function suits
its purpose.

Coevolution selects the tests used in evaluation adaptively;
next to the population of candidate solutions, a population
of tests is maintained that are used to evaluate the candi-
date solutions. It has been shown that such a setup can in
principle yield ideal evaluation (De Jong & Pollack, 2004),
equivalent with evaluating against all tests, using only a
small set of tests. This is possible because at every point
in time, only the relations between the current candidate
solutions need to be evaluated. Thus, a set of tests that
reveal all relations between the existing candidate solutions
is sufficient.

While the theoretical possibility of ideal evaluation is in-
teresting in itself, an important practical question is to what
extent this ideal can be achieved. The delphi algorithm we
presented in earlier work (2004) is designed to approximate
ideal evaluation, and is based on the idea of searching for
an ideal evaluation set as an inner loop inside the search al-
gorithm. Since it cannot always be known whether an ideal
evaluation set has already been reached, the delphi algo-
rithm can only approximate ideal evaluation. Furthermore,
the algorithm has a limited potential for exploration.

A second approach to achieving reliable progress in co-
evolution is the use of an archive that guarantees monotonic
progress, i.e. progress such that a distance function exists
for which the distance to the solution concept decreases
with every change to the archive. The Nash Memory (Fi-
cici, 2004; Ficici & Pollack, 2003) guarantees monotonicity
for the Nash equilibrium. The IPCA algorithm (De Jong,
2004a, 2004b) guarantees monotonicity for the solution con-
cept of the Pareto-Optimal Equivalence Set. IPCA con-
verges to this set for any finite search space if the generator
of new individuals is sufficiently explorative. Specifically, it
must be capable of generating all combinations of individ-
uals with some non-zero probability. The Pareto-optimal
set is the set of solutions that provide a maximal trade-off
between the different objectives, so that a solution’s perfor-
mance in an objective cannot be improved without reduc-
ing its performance in other objectives. Since every test is
viewed as an objective in this setup, the Pareto-optimal set
may be very large. An important question for the practice
of coevolution therefore is whether monotonic archives for
different solution concepts can be designed.

In this paper, we first define several main solution con-
cepts that can be used in coevolution. Next, for one of these

483



solution concepts, we design an algorithm that guarantees
monotonicity, under the assumption of a finite search space.
To test the degree to which this new method addresses the
above limitation of IPCA, we compare the two methods in
experiments. The results show that the new method offers a
tradeoff between archive size and performance, and for inter-
mediate choices of the parameter that governs this trade-off,
the algorithm outperforms IPCA.

The paper is structured as follows Section 1 defines several
main solution concepts for coevolution. Section 2 discusses
related work. The MaxSolve algorithm is presented in Sec-
tion 3. Section 4 defines the discretized compare-on-one

problem. Results are presented in Section 5, followed by
conclusions.

1. SOLUTION CONCEPTS FOR
COEVOLUTION

In this section, we define several main solution concepts
that can be used in coevolution.

We use the following notation. The set of all possible
candidate solutions is denoted as

�
, and the set of all pos-

sible tests as � . The outcome of a test T for a candidate C

may in principle come from any ordered set. Without loss
of generality, it will be assumed to be a real number here.
The interaction function used to determine this outcome is
written as G (for Game): G(C, T ) → � .

1.1 S0: Simultaneous Maximization of All
Outcomes

The first solution concept requires an optimal solution C

to maximize the outcome over all possible tests simultane-
ously, as formalized in the following requirement:

S0 = {C ∈
�
|∀C ′ ∈

�
: ∀T ∈ � : G(C, T ) ≥ G(C ′

, T )}

This solution concept has a limited application scope, as for
many problems there does not exist a single solution that
simultaneously maximizes the outcome of all possible tests.

1.2 S1: Maximization of Expected Utility
The second solution concept specifies as a solution the

individuals that maximize the expected score against a ran-
domly selected opponent:

S1 = {C ∈
�
|∀C ′ ∈

�
: E(G(C, T )) ≥ E(G(C ′

, T ))

where E is the expectation operator and T is randomly
drawn from � . This solution concept is appropriate for
many problems, for example identifying the best chess player.
It is equivalent to maximizing the sum of an individual’s out-
comes over all tests, or to a uniform linear weighting of the
objectives. It thus implicitly assumes that all tests are of
equal importance; while this may not be the case, it is a
reasonable assumption in the absence of knowledge about
the relative importance of the different tests.

For binary problems, this solution concept may equiva-
lently be defined as the set of candidate solutions that solve
the largest possible number of tests; the candidate solu-
tions with the highest expected score are those that solve
the largest number of tests. Thus, an alternative definition
for S1 is:

S1 = {C ∈
�
|∀C ′ ∈

�
:

|{T ∈ � |solves(C, T )}| ≥ |{T ∈ � |solves(C ′
, T )}|

Here, a candidate solution C is said to solve a test T if it
has a positive outcome on the test:

solves(C, T ) ≡ G(C, T ) > 0

1.3 S2: Nash Equilibrium
Game theory provides the solution concept of the Nash

equilibrium. A Nash equilibrium specifies a strategy for each
player such that no player can profitably deviate given the
strategies of the other players.

Formally, let the n classes of individuals in a problem be
written as I1, I2, . . . In, where for a test-based problem we
could have for example I1 =

�
and I2 = � . Let I = ×j∈NIj

where N is the set of indices: N = {1, 2, . . . , n}. Given a
set of individuals Ii, let ∆(Ii) denote the set of probability
distributions over Ii, and let Ω = ×j∈N∆(Ij). A mixed
strategy profile α ∈ Ω specifies a probability distribution
for each class of individuals. The expected outcome for the
ith class of individuals in a mixed strategy profile is written
as: E(Gi(α)) =

P

a∈I

Π
j∈N

αj(aj)Gi(a), where Gi(a) returns

the outcome for the ith individual. Then a mixed-strategy
Nash-equilibrium is a mixed-strategy α∗, such that:

S2 = {α∗ ∈ Ω|∀i : ∀αi ∈ ∆(Ii) :

E(Gi(α∗)) ≥ E(Gi(α∗1, .., α∗i−1, αi, α∗i+1, .., α∗N ))))

An attractive feature of the Nash equilibrium as a solution
concept is that, while being general, the set of individuals
it represents can be relatively small; this is a valuable prop-
erty for coevolutionary search. A disadvantage is that there
can be (infinitely) many Nash equilibria, part of which may
be dominated; thus, finding a Nash equilibrium does not
guarantee that the highest possible outcomes are achieved.

1.4 S3: Pareto-Optimal Set
Evolutionary Multi-Objective Optimization extends com-

mon evolutionary methods by facilitating the use of multi-
ple objectives. This may be viewed as the use of a fitness
function that is vector-valued rather than scalar. In Pareto-
Coevolution, every possible test is viewed as an objective. A
central concept in Evolutionary Multi-Objective Optimiza-
tion is that of Pareto-dominance. Applied to the current
context, a candidate solution C1 is said to dominate another
candidate solution C2 if the following holds:

dom(C1, C2) ≡ ∀T ∈ � : G(C1, T ) ≥ G(C2, T )

∧ ∃T ∈ � : G(C1, T ) > G(C2, T )

The solution concept of the Pareto-Optimal Set consists
of all candidate solutions that are not dominated by any
other solutions:

S3 = {C ∈
�
|@C

′ ∈
�

: dom(C ′
, C)}

1.5 S4: Pareto-Optimal Equivalence Set
For each maximal combination of tests that can be solved,

the Pareto-Optimal set contains all candidate solutions that
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solve it. Thus, the set may contain many equivalent can-
didates that each solve the same combination of tests. We
define a variant of the Pareto-Optimal set that does not con-
tain such duplicate candidate solutions. This set is defined
by the requirement that for each maximal combination of
tests that can be solved, it contains at least one candidate
solution that solves it. Since multiple such sets may exist,
we define S4 as the collection of all such sets:

S4 = {S ⊆
�
|∀TS ⊆ � : ∃C ∈

�
: solves(C, TS)

=⇒ ∃C ′ ∈ S : solves(C ′
, TS)

2. RELATED WORK
A number of researchers have investigated the use of co-

evolution as a problem solving technique (Reynolds, 1994;
Miller & Cliff, 1994; Angeline & Pollack, 1994; Schmidhu-
ber, 1999; Pagie & Hogeweg, 1998; Paredis, 1996; Pollack &
Blair, 1998; Funes, 2001; Rosin, 1997; Lubberts & Miikku-
lainen, 2001; Werfel, Mitchell, & Crutchfield, 2000; Moriarty
& Miikkulainen, 1998; Potter & De Jong, 2000; Stanley &
Miikkulainen, 2004).

While we focus on the application of coevolution to test-
based problems here, coevolution can also be used to address
problems where a fitness function is given; this form of co-
evolution is called Cooperative or Compositional Coevolution
(Potter & De Jong, 2000; Watson & Pollack, 2003; Wiegand,
2003; Jansen & Wiegand, 2003)

Recent research in coevolution has benefited from an in-
creased understanding of the adaptive search process, as
expressed in the development of several recent theoretical
approaches. These include the use of Evolutionary Multi-
Objective Optimization concepts to describe Pareto-coevolution
(Ficici & Pollack, 2000; Watson & Pollack, 2000; De Jong &
Pollack, 2004), order theory (Bucci & Pollack, 2002, 2003),
and game theory (Ficici, 2004; Ficici & Pollack, 2000, 2003;
Wiegand, 2003; Wiegand, Liles, & De Jong, 2002).

The focus of this work is on monotonicity. In the follow-
ing, we therefore discuss existing coevolutionary algorithms
with a monotonicity guarantee. Rosin (1997) presents the
covering competitive algorithm, which guarantees monotonic-
ity for the S0 solution concept. Schmitt (2003) presents a
convergence proof for a variant of S0 involving more than
two types of individuals, but still requiring the existence of
individuals that simultaneously maximize the outcome over
all individuals of other types. Ficici has described an algo-
rithm that guarantees monotonicity for S2, the Nash equi-
librium. Ficici (Ficici, 2004) also discusses a different notion
of monotonicity, which is applicable to open-ended spaces.
Finally, the IPCA algorithm guarantees monotonicity for the
solution concepts of the Pareto-Optimal Equivalence Set.

To the best of our knowledge, no monotonic method is
available so far for the solution concept S1, Maximization of
Expected Utility. Yet, this solution concept is of high prac-
tical relevance, as it avoids restrictive limitations (e.g. the
assumption that a single solution exists that maximizes per-
formance over all tests simultaneously), and does not have
the problematic property of specifying a large number of
possible solutions (for example the Pareto-front for a prob-
lem can be very large, so that the number of candidate in-
dividuals it maintains is too large for a practical search al-
gorithm). In the following, we provide an algorithm that
progresses monotonically for the solution concept S1.

submit(CSnew, TSnew){
CA := CA ∪ CSnew;
TA := TA ∪ TSnew;
∀C ∈ CA

no solved[C] = number solved(C, TA);
∀Ci ∈ CA

∀Cj ∈ CA, j > i

if ∀T ∈ TA : G(Ci, T ) = G(Cj , T )
no solved[Cj ] := 0;

end
sort(CA, no solved[]);
for i = 1 : archive size

if (no solved[CA[i]] > 0)
select(CA[i])

end
end
∀T ∈ TA

if ∃C ∈ CA : solves(C, T )
select(T );

end
∀T ∈ TA

∀T ′ ∈ TA, T ′ 6= T

if ∀C ∈ CA : G(C, T ) = G(C, T ′)
deselect(T );

end
}

Figure 1: Pseudocode for the MaxSolve algorithm.

3. THE MAXSOLVE ALGORITHM
We now consider how an algorithm may be devised that

guarantees monotonicity for the solution concept S1. The
algorithm is called MaxSolve, since it searches for candidate
solutions that solve the maximum number of tests. Pseu-
docode for the algorithm is shown in Figure 1.

In order to guarantee monotonic progress towards the set
of candidate solutions solving the largest number of tests,
the algorithm compares candidate solutions based on how
many of the tests seen by the candidate solution so far they
are able to solve. By ensuring that this number can only
increase, monotonicity for the solution concept of S1 is as-
sured, assuming that the search space is finite.

The algorithm receives a set of new candidate solutions
CSnew and a set of new tests TSnew that are to be consid-
ered for placement in the archive. First, it measures for each
candidate how many of the tests available so far it solves.
Candidates with identical outcomes for all tests are consid-
ered superfluous and assigned a zero score, so that they will
not be selected.

We note that a candidate discarded in this manner could
potentially solve more unseen tests than the candidates that
are maintained. This does not violate the monotonicity of
the archive however, since progress is measured with respect
to the set of tests seen so far. If the rejected candidate
solution does indeed solve more tests, this will eventually be
discovered given sufficient further search, at which point it
will be included.

The next step in the algorithm is to sort candidate so-
lutions. The sort function sorts candidates based on the
number of tests they solve. number solved(C, TS) returns
the number of tests in TS solved by a candidate solution C.
Using the sorted ordering, the highest scoring individuals
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Figure 2: The standard compare-on-one game. Can-
didates are tested on the highest dimension of the
test. Thus, tests below the diagonal test the hori-
zontal dimension of candidates. Comparison of the
tests solved by candidates (see arrows) provides a
gradient indicating the direction of improvement.

are selected to remain in the archive, with the restriction
that selected individuals must solve at least one test, and
up to a maximum of n individuals, where n is a parameter
specifying the maximum size of the archive.

To determine which tests to maintain, all tests solved by
one or more of the selected candidates are selected. The
algorithm described so far is monotonic. For efficiency, the
following procedure is added: of multiple tests with identical
outcome vectors only one is maintained.

The following section describes the test problem that will
be used in the experiments.

4. THE DISCRETIZED COMPARE-ON-ONE

PROBLEM
One of the issues that complicates the design of reliable

coevolution algorithms is the problem of over-specialization
(Watson & Pollack, 2001; De Jong & Pollack, 2004). For
any problem, there can be multiple underlying factors that
determine the quality of individuals, and it may well be the
case that individuals only progress on one or more of these
factors, but fail to do so on others.

The compare-on-one problem (De Jong & Pollack, 2004)
is a Numbers Game problem (Watson & Pollack, 2001) that
is designed to make over-specialization likely. It does so by
letting tests test on a single dimension only. Both candidate
solutions and tests are points in an n-dimensional space. A
test tests whether a candidate is at least as high as the test
in the dimension in which the test is highest:

m = arg max
i

Ti

G(C, T ) =



1 if Cm ≥ Tm

−1 otherwise

where C is a candidate, T is a test, and Xi denotes the value
of an individual X (C or T ) in dimension i.

Due to the definition of the game, a test only evaluates a
candidate on a single dimension. Unless special attention is
paid to maintaining a diverse set of tests, it is unlikely that
the test population will maintain tests for each dimension.
This effect is enhanced by the tendency of tests to increase

only in the dimension on which they test, thus moving away
from the diagonal. This makes it unlikely that a lost dimen-
sion will later be regained. If a dimension is lost, individuals
can only progress on some of the underlying dimensions, but
will be likely to drift in others.

Individuals are supplied to the archive by a generator,
consisting of a population of candidate solutions and a pop-
ulation of tests, both of size 50. The size of the new gener-
ations of candidate solutions and tests in the generator are
also 50. All archives are initially empty.

To increase the difficulty of the problem, a negative mu-
tation bias is used to model the property of actual problems
that a variation is more likely to cause regress than progress.
Thus, unless regress is avoided for all underlying objectives
of the problem, the values of individuals are expected to ac-
tually decrease in the lost dimensions rather than just drift.
The need to detect both progress and regress is further in-
creased by applying mutation to multiple (two) dimensions
at the same time. Specifically, mutation performs the fol-
lowing procedure twice: randomly select a dimension, and
add a value chosen randomly uniformly from the mutation
range. The mutation range is biased towards the negative
side, and is [-0.15,0.1]. New individuals are generated using
two-point crossover (50%) or the mutation procedure (50%).

The compare-on-one problem was developed to induce
over-specialization. In order to determine whether overspe-
cialization occurs, performance is measured as the lowest
value of an individual’s dimensions. Due to this, the de-
creasing values in a dimension will at some point result in
a decreasing performance for the individual, so that over-
specialization can be clearly detected. The experiments will
employ the 3-dimensional version of the compare-on-one

problem.
Since we expect exploration to be a necessary ingredient

for real-world coevolutionary problems, a question is how re-
liability can be combined with exploration. In order to test
the ability of coevolution algorithms to perform exploration,
we employ a discretized version of the compare-on-one

problem. In the discretized compare-on-one problem (see
Figures 2, 3), the value in each dimension of an individual
is rounded to the nearest multiple of a parameter δ below
it. This discretization is applied to both candidates and
tests before evaluating the outcome of the problem, without
affecting the genotype. The ranges of the variables are un-
bounded, making the search space infinite; in this way an
open-ended co-evolutionary process can be simulated.

m = arg max
i

d(Ti) (1)

G(C, T ) =



1 if d(Cm) ≥ d(Tm)
−1 otherwise

(2)

where d(x) = δb x
δ
c

As an example, using δ = 0.25 as in the experiments, the
individual [0.23, 0.30, 0.47] would be mapped to [0, 0.25, 0.25]
before calculating the outcome of the standard compare-

on-one problem. The discretization procedure greatly re-
duces the amount of gradient present in the problem; indi-
viduals have no means to determine whether a value of .45
is better than .25. The mutation range is set such that im-
provements can only be reached by making multiple subse-
quent steps in the right direction. Addressing the discretized
compare-on-one problem therefore requires a substantial
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Discretized compare-on-one game
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Figure 3: The discretized compare-on-one game. All
individuals are mapped to the lower-left corner of
their square in the discretization grid. Thus, the
candidates solve all tests in their square. As a result,
much of the gradient information is lost.

 2

 4

 6

 0  5e+06  1e+07

P
er

fo
rm

an
ce

 (
lo

w
es

t o
bj

ec
tiv

e 
va

lu
e)

Function evaluations

MaxSolve 10
MaxSolve 5

MaxSolve 20
MaxSolve 2

IPCA
MaxSolve 1

Figure 4: Experimental comparison of IPCA and
Maxsolve with archive sizes 1, 2, 5, 10, and 20 on
the discretized compare-on-one problem with muta-
tion bias. For several parameter values, MaxSolve
performs better than IPCA.

amount of random exploration in addition to the difficulties
posed by the standard compare-on-one problem.

5. RESULTS
We now investigate the behavior of IPCA and MaxSolve

on the discretized compare-on-one problem. Figure 4 shows
the performance of the two methods measured as a function
of the number of evaluations, where each evaluation com-
putes the outcome of a test for a given candidate. All out-
comes are cached, and therefore computed and measured
only once. For MaxSolve, archive sizes of 1, 2, 5, 10, and 20
are used.

Performance is measured as the lowest dimension of an in-
dividual. This provides an objective measure of the quality
of the individual. Furthermore, it has the property that the
performance measure can only consistently increase if indi-
viduals are progressing in all underlying objectives. Thus, it
is more difficult to obtain increasing performance using this
measure than using e.g. the average value of the objectives.
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Figure 5: Performance of the best archive member
in the three underlying objectives for an example
run. While each transition is guaranteed to yield
improvement in at least one objective, the value of
the lowest objective may nonetheless decrease over
time.

As the graph in Figure 4 shows, the performance of Max-
Solve varies with the maximum archive size parameter. For
several parameters, it performs better than IPCA. The best
performance is obtained using an archive size of 10; the per-
formance in this case is substantially higher than that of
IPCA. Thus the MaxSolve algorithm is seen to provide a
useful extension to the small but growing collection of reli-
able algorithms that are available for coevolution.

A first striking observation is that for an archive size of
1, the performance measure at some point begins to decline.
This may at first sight seem at odds with the claim that the
algorithm guarantees monotonicity. The reason this phe-
nomenon can occur is that the test problem features multi-
ple underlying objectives (De Jong & Pollack, 2004), as will
now be discussed.

The underlying objectives for this problem correspond
precisely to the dimensions of the space in which the in-
dividuals reside. Specifically, the performance of each can-
didate solution is determined by the three coordinates that
make up its genotype. The performance measure shown in
the graph reflects the lowest value for each individual, and
shows the highest score for this value over the individuals in
the archive, averaged over 30 runs.

While the individuals in the archive are selected so as to
solve an incremental number of the tests that have been col-
lected, and thus to improve in some underlying objective,
this does not imply that the performance level obtained in
each underlying objective will be maintained. This is seen
when the three genotypic values of the best archive mem-
ber are tracked over time; see Fig. 5. While each change in
the archive improves the performance of some objective, the
value of the lowest objective may decrease. As a result of
this, the performance measure shown earlier can decrease,
as it reflects the performance of individuals in their lowest
dimension. If the problem space is finite however, the po-
tential for improvement in each underlying objective will at
some point be exhausted, after which progress in other un-
derlying objectives is inevitable given sufficient exploration.
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Figure 6: The trade-off between archive size and
performance; the best performance is obtained for
an intermediate archive size. See text.

While it is straightforward to achieve the theoretical guar-
antee that progress will at some point occur, it may take an
impractical amount of time before such progress occurs, and
accordingly the occurrence of over-specialization does pose
a problem to search algorithms in practice. Therefore, it is
particularly interesting to see that for larger archive sizes,
the MaxSolve algorithm is able to avoid over-specialization.
Our explanation for this observation is that given a larger
number of candidates, the tests solved by the candidate
archive form a more diverse set, so that individuals progress-
ing in multiple dimensions can be successfully distinguished
from those focusing on a subset of the objectives. While
there is no explicit pressure to avoid over-specialization, the
maintenance of a more diverse set of tests can apparently be
sufficient to facilitate progress in all underlying objectives.

A further observation is that there appears to be a trade-
off between the archive size and performance; the best re-
sults are obtained for an intermediate archive size. To vi-
sualize this trade-off more clearly, we have plotted the per-
formance of MaxSolve after 107 function evaluations as a
function of the maximum archive size. Figure 6 shows the
results, and clearly shows the trade-off.

6. CONCLUSIONS
We have investigated the solution concept of maximizing

the expected outcome against a random opponent. This
solution concept may equivalently be seen as maximizing
the number of defeated opponents or solved tests.

An algorithm that guarantees monotonicity for this solu-
tion concept has been presented, named MaxSolve. Max-
Solve has been compared to IPCA, which guarantees mono-
tonicity for the solution concept of the Pareto-Optimal Equiv-
alence set. In experiments with a test problem likely to in-
duce over-specialization, MaxSolve was seen to outperform
IPCA for intermediate archive sizes. MaxSolve furthermore
avoids the limitation of IPCA that the solution concept may
involve a large number of individuals, since the algorithm
maximizes the number of tests solved and avoids the main-
tenance of equivalent individuals. Regarding the choice of
the archive size, a trade-off was observed, and intermediate
values were seen to yield the best results.
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